Learning about different shapes can expand your English vocabulary while improving your understanding of geometry. Shapes are all around us, from the simplest forms like circles and squares to complex shapes such as dodecagons and spirals. Whether you’re a student, a teacher, or just someone curious about the world, this guide will introduce you to Geometry list of Shapes Name in English, providing pictures and explanations to make recognizing and using these s
Basic 2D Geometry list of Shapes Name
Circle, Square, Triangle, and Rectangle
These basic geometry list of Shapes Name with pictures are probably the ones you encounter most frequently. Let’s break down their characteristics and see how different geometry shape names with pictures function in real life.
Circle
- Definition: A round shape with every point on its edge equidistant from the center.
- Properties: No sides, no corners.
- Real-world examples: Wheels, coins, rings.
Square
- Definition: A quadrilateral with all four sides equal and all angles at 90 degrees.
- Properties: 4 sides, 4 right angles.
- Real-world examples: Chessboards, windows, tiles.
Triangle
- Definition: A polygon with three edges and three vertices.
- Types of triangles:
- Equilateral:
- All sides and angles are equal.
- Isosceles: Two sides are equal.
- Scalene: All sides are of different lengths.
- Right: One angle is exactly 90 degrees.
- Obtuse: One angle is greater than 90 degrees.
- Acute: All angles are less than 90 degree
Rectangle
- Definition: A quadrilateral where opposite sides are equal, and all angles are right angles.
- Properties: 4 sides, 4 right angles.
- Real-world examples: Books, doors, smartphones.
You might also like:
Vocabulary about Parts of a Computer
Advanced 2D Geometry list of Shapes Name
These shapes go beyond the basic ones, appearing in everything from design to engineering. Let’s explore some of the more different geometry shape names that you may encounter.
Pentagon, Hexagon, Heptagon, and Octagon
- Pentagon: A five-sided polygon. Seen in architectural designs and logos.
- Hexagon: Six-sided polygon. Honeycombs and chemical structures often use hexagons.
- Heptagon: A seven-sided polygon, though less common in daily life.
- Octagon: An eight-sided polygon, most famously seen in stop signs.
Shapes easier in daily life.
Shape | Number of Sides | Example |
Pentagon | 5 | U.S. Pentagon building |
Hexagon | 6 | Honeycomb structure |
Heptagon | 7 | Certain coins |
Octagon | 8 | Stop signs |
These shapes are geometric shapes with more sides and angles, often used in construction and design to create strong, symmetrical patterns.
You might also like:
500 + Normal vs Advanced vocabulary English words
Quadrilaterals and Parallelograms
Moving beyond triangles, let’s take a look at four-sided geometry shape names.
Trapezoid
- Definition: A quadrilateral with at least one pair of parallel sides.
- Uses: Common in bridge designs and architectural elements.
Parallelogram
- Definition: Opposite sides are equal and parallel.
- Uses: Seen in certain types of buildings and wall designs.
Rhombus
- Definition: All four sides are equal, but angles are not 90 degrees.
- Uses: Used in diamond-shaped designs and tiling patterns.
Shape | Parallel Sides | Equal Sides | Example |
Trapezoid | 1 pair | No | Bridge designs |
Parallelogram | 2 pairs | Opposite | Modern architecture |
Rhombus | 2 pairs | All | Diamond-shaped windows |
Unique and Niche Shapes
Some geometry list of Shapes Name are less common, but they still play important roles in mathematics, physics, and design.
Decagon, Heptagon, and Nonagon (geometry shape names(
- Dodecagon: A 12-sided polygon. Seen in complex architectural designs.
- Heptagon: Seven-sided, used less often but interesting in mathematical contexts.
- Nonagon: A nine-sided shape, found occasionally in tiling patterns.
Tetrahedron, Octahedron, and Icosahedron
- Tetrahedron: A 3D shape made of four triangular faces.
- Octahedron: Made up of eight faces.
- Icosahedron: A 3D shape with 20 triangular faces, commonly used in gaming dice.
3D Shapes:list of Shapes Name
While 2D shapes are important, understanding 3D list of Shapes Name expands your geometric knowledge into the real world.
Cube, Sphere, Cone, and Cylinder
- Cube: Six equal square faces.
- Sphere: A perfectly round 3D object.
- Cone: A circular base with a pointed top.
- Cylinder: Two circular faces and a curved surface.
- Real-world uses: From cube-shaped boxes to cylinder pipes.
3D Shape | Description | Example |
Cube | Six equal square faces | Dice, boxes |
Sphere | Round, like a ball | Basketball, globes |
Cone | Circular base, pointed top | Ice cream cones |
Cylinder | Two circular ends, one body | Cans, pipes |
Mathematical and Irregular Shapes
Some shapes are found in mathematics and science, especially in advanced studies.
Hyperbola and Parabola
- Hyperbola: A shape formed by intersecting a plane with a cone.
- Parabola: The U-shaped curve seen in satellite dishes and arches.
Sine and Cosine Waves
- Sine Wave: A smooth periodic wave, seen in physics and signal processing.
- Cosine Wave: Similar to the sine wave but shifted.
Fractals and Patterns
Fractals are incredibly complex shapes that repeat themselves at different scales. They are both mathematically fascinating and visually beautiful.
Koch Snowflake, Sierpinski Triangle
- Koch Snowflake: A fractal that looks like a snowflake, infinitely detailed.
- Sierpinski Triangle: A triangle made of smaller triangles, often used in computing and design.
Cantor Set and Apollonian Gasket
- Cantor Set: A set of points lying on a single line segment with a pattern of intervals removed.
- Apollonian Gasket: A fractal generated from tangent circles.
Fractal | Pattern | Use Case |
Koch Snowflake | Self-repeating | Seen in design, patterns |
Sierpinski Triangle | Repeating triangles | Computing, art |
Cantor Set | Removed intervals | Mathematical studies |
Apollonian Gasket | Tangent circles | Complex design, art |
Here’s a detailed table summarizing the properties of all the GEOMETRY SHAPE NAMES shapes, including sides, edges, vertices, angles, and other defining features.
This table includes basic, advanced, 3D, and unique shapes along with their fundamental properties. It serves as a comprehensive guide to better understanding these geometric shapes.
Geometrical Shapes with Properties
BASIC 2D GEOMETRY SHAPE NAMES
Shape Name | Sides | Edges | Vertices | Angles | Properties |
Circle | 0 | 0 | 0 | 360° total | Round, no sides or vertices, every point equidistant from center |
Square | 4 | 4 | 4 | 90° angles | All sides equal, opposite sides parallel |
Triangle (General) | 3 | 3 | 3 | Sum of angles = 180° | Three types: equilateral, isosceles, scalene |
Equilateral Triangle | 3 | 3 | 3 | All angles = 60° | All sides equal |
Isosceles Triangle | 3 | 3 | 3 | Two angles are equal | Two equal sides |
Scalene Triangle | 3 | 3 | 3 | No equal angles | All sides of different lengths |
Right Triangle | 3 | 3 | 3 | One angle = 90° | Common in geometry, Pythagorean theorem applies |
Obtuse Triangle | 3 | 3 | 3 | One angle > 90° | The other two angles are acute |
Acute Triangle | 3 | 3 | 3 | All angles < 90° | All angles are acute |
Rectangle | 4 | 4 | 4 | 90° angles | Opposite sides are equal and parallel |
ADVANCED 2D gEOMETRY SHAPE NAMES
Shape Name | Sides | Edges | Vertices | Angles | Properties |
Pentagon | 5 | 5 | 5 | Interior angles = 108° | Common in architecture and design |
Hexagon | 6 | 6 | 6 | Interior angles = 120° | Found in nature (e.g., honeycombs) |
Heptagon | 7 | 7 | 7 | Interior angles = 128.57° | Less commonly used shape |
Octagon | 8 | 8 | 8 | Interior angles = 135° | Commonly seen in stop signs |
Nonagon | 9 | 9 | 9 | Interior angles = 140° | Uncommon shape, used in advanced designs |
Dodecagon | 12 | 12 | 12 | Interior angles = 150° | Common in advanced geometry |
Rhombus | 4 | 4 | 4 | Opposite angles equal | All sides equal, opposite sides parallel |
Parallelogram | 4 | 4 | 4 | Opposite angles equal | Opposite sides parallel and equal |
Trapezoid | 4 | 4 | 4 | One pair of parallel sides | Unequal sides (except for special cases like isosceles) |
Kite | 4 | 4 | 4 | Two pairs of equal adjacent sides | Diagonals intersect at right angles |
Star | Varies | Varies | Varies | Varies | Points extend outward from a central shape |
Crescent | Curved | Curved | 0 | Curved edges | Shaped like a moon |
Arrow | Varies | Varies | Varies | Varies | Typically used in diagrams to indicate direction |
3D SHAPES
Shape Name | Sides | Edges | Vertices | Angles | Properties |
Cube | 12 | 12 | 8 | All angles = 90° | 3D shape, all faces are squares |
Sphere | 0 | 0 | 0 | None | Round 3D object, surface is curved |
Cone | 1 base | 1 | 1 vertex | None | Circular base, tapers to a point |
Cylinder | 2 bases | 2 | 0 | None | Two parallel circular bases connected by a curved surface |
Pyramid | Varies | Varies | 1 apex + base vertices | Varies | Polygon base, triangular faces meet at a single point |
Prism | Varies | Varies | Varies | Varies | Two identical polygonal faces connected by parallelograms |
Tetrahedron | 6 edges | 6 | 4 | Faces are equilateral triangles | A 3D shape with 4 triangular faces |
Octahedron | 12edges | 12 | 6 | Faces are equilateral triangles | A 3D shape with 8 triangular faces |
Icosahedron | 30edges | 30 | 12 | Faces are equilateral triangles | A 3D shape with 20 triangular faces |
MATHEMATICAL AND IRREGULAR SHAPE
Shape Name | Sides | Edges | Vertices | Angles | Properties |
Annulus | 0 | 0 | 0 | Curved surface | A ring-shaped object, essentially a circular band |
Mobius Strip | 0 | 0 | 0 | None | A surface with only one side and one boundary |
Lemniscate | Curved | Curved | 0 | Infinite loop | Figure-eight shape, related to the concept of infinity |
Hyperbola | Curved | Curved | 0 | Symmetrical U-shaped curves | Curve created by the intersection of a double cone and a plane |
Parabola | Curved | Curved | 0 | Symmetrical | U-shaped curve, often used in physics and engineering |
Sine Wave | Curved | Curved | 0 | Oscillating wave pattern | Common in signal processing and wave physics |
Koch Snowflake | Infinite | Infinite | Infinite | Self-replicating pattern | A fractal shape, edges are infinitely complex |
Sierpinski Triangle | Infinite | Infinite | Infinite | Infinite repeating triangles | A fractal shape made from repeatedly subdividing triangles |
Cantor Set | Infinite | Infinite | Infinite | Interval divisions | Infinite number of points removed in patterns |
Apollonian Gasket | Infinite | Infinite | Infinite | Circles within circles | A fractal pattern made of tangent circles |
Annulus | 0 | 0 | 0 | Curved surface | A ring-shaped object, essentially a circular band |
John Robert is a seasoned grammar enthusiast and the insightful voice behind MrEnglishMatch. With years of experience in language arts and a passion for clear, effective communication, John’s blog posts blend expertise with approachable advice. His deep understanding of grammar and style helps readers sharpen their writing skills and master the nuances of English. When not blogging, John enjoys exploring new languages and reading classic literature.